Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Math Biosci Eng ; 20(7): 13061-13085, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37501478

RESUMO

PURPOSE: Coronary microvascular dysfunction (CMD) is emerging as an important cause of myocardial ischemia, but there is a lack of a non-invasive method for reliable early detection of CMD. AIM: To develop an electrocardiogram (ECG)-based machine learning algorithm for CMD detection that will lay the groundwork for patient-specific non-invasive early detection of CMD. METHODS: Vectorcardiography (VCG) was calculated from each 10-second ECG of CMD patients and healthy controls. Sample entropy (SampEn), approximate entropy (ApEn), and complexity index (CI) derived from multiscale entropy were extracted from ST-T segments of each lead in ECGs and VCGs. The most effective entropy subset was determined using the sequential backward selection algorithm under the intra-patient and inter-patient schemes, separately. Then, the corresponding optimal model was selected from eight machine learning models for each entropy feature based on five-fold cross-validations. Finally, the classification performance of SampEn-based, ApEn-based, and CI-based models was comprehensively evaluated and tested on a testing dataset to investigate the best one under each scheme. RESULTS: ApEn-based SVM model was validated as the optimal one under the intra-patient scheme, with all testing evaluation metrics over 0.8. Similarly, ApEn-based SVM model was selected as the best one under the intra-patient scheme, with major evaluation metrics over 0.8. CONCLUSIONS: Entropies derived from ECGs and VCGs can effectively detect CMD under both intra-patient and inter-patient schemes. Our proposed models may provide the possibility of an ECG-based tool for non-invasive detection of CMD.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Humanos , Entropia , Eletrocardiografia/métodos , Algoritmos , Isquemia Miocárdica/diagnóstico
2.
Entropy (Basel) ; 25(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37238530

RESUMO

ECG signal processing is an important basis for the prevention and diagnosis of cardiovascular diseases; however, the signal is susceptible to noise interference mixed with equipment, environmental influences, and transmission processes. In this paper, an efficient denoising method based on the variational modal decomposition (VMD) algorithm combined with and optimized by the sparrow search algorithm (SSA) and singular value decomposition (SVD) algorithm, named VMD-SSA-SVD, is proposed for the first time and applied to the noise reduction of ECG signals. SSA is used to find the optimal combination of parameters of VMD [K,α], VMD-SSA decomposes the signal to obtain finite modal components, and the components containing baseline drift are eliminated by the mean value criterion. Then, the effective modalities are obtained in the remaining components using the mutual relation number method, and each effective modal is processed by SVD noise reduction and reconstructed separately to finally obtain a clean ECG signal. In order to verify the effectiveness, the methods proposed are compared and analyzed with wavelet packet decomposition, empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm. The results show that the noise reduction effect of the VMD-SSA-SVD algorithm proposed is the most significant, and that it can suppress the noise and remove the baseline drift interference at the same time, and effectively retain the morphological characteristics of the ECG signals.

3.
Entropy (Basel) ; 25(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36981365

RESUMO

Turbulence can cause effects such as light intensity fluctuations and phase fluctuations when a laser is transmitted in the atmosphere, which has serious impacts on a number of optical engineering application effects and on climate improvement. Therefore, accurately obtaining real-time turbulence intensity information using lidar-active remote sensing technology is of great significance. In this paper, based on residual turbulent scintillation theory, a Mie-scattering lidar method was developed to detect atmospheric turbulence intensity. By extracting light intensity fluctuation information from a Mie-scattering lidar return signal, the atmospheric refractive index structure constant, Cn2, representing the atmospheric turbulence intensity, could be obtained. Specifically, the scintillation effect on the detection path was analyzed, and the probability density distribution of the light intensity of the Mie-scattering lidar return signal was studied. It was verified that the probability density of logarithmic light intensity basically follows a normal distribution under weak fluctuation conditions. The Cn2 profile based on Kolmogorov turbulence theory was retrieved using a layered, iterative method through the scintillation index. The method for detecting Kolmogorov turbulence intensity was applied to the detection of the non-Kolmogorov turbulence intensity. Through detection using the scintillation index, the corresponding C˜n2 profile could be calculated. The detection of the C˜n2 and Cn2 profiles were compared with the Hufnagel-Valley (HV) night model in the Yinchuan area. The results show that the detection results are consistent with the overall change trend of the model. In general, it is feasible to detect a non-Kolmogorov turbulence profile using Mie-scattering lidar.

4.
Entropy (Basel) ; 24(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36554168

RESUMO

The Mie-scattering lidar can detect atmospheric turbulence intensity by using the return signals of Gaussian beams at different heights. The power spectrum method and Zernike polynomial method are used to simulate the non-Kolmogorov turbulent phase plate, respectively, and the power spectrum method with faster running speed is selected for the subsequent simulation. In order to verify the possibility of detecting atmospheric turbulence by the Mie-scattering lidar, some numerical simulations are carried out. The power spectrum method is used to simulate the propagation of the Gaussian beam from the Mie-scattering lidar in a vertical path. The propagation characteristics of the Gaussian beam using a non-Kolmogorov turbulence model are obtained by analyzing the intensity distribution and spot drift effect. The simulation results show that the scintillation index of simulation is consistent with the theoretical value trend, and the accuracy is very high, indicating that the method of atmospheric turbulence detection using Mie-scattering lidar is effective. The simulation plays a guiding role for the subsequent experimental platform construction and equipment design.

5.
Front Physiol ; 13: 854191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707012

RESUMO

Background: Myocardial ischemia is a common early symptom of cardiovascular disease (CVD). Reliable detection of myocardial ischemia using computer-aided analysis of electrocardiograms (ECG) provides an important reference for early diagnosis of CVD. The vectorcardiogram (VCG) could improve the performance of ECG-based myocardial ischemia detection by affording temporal-spatial characteristics related to myocardial ischemia and capturing subtle changes in ST-T segment in continuous cardiac cycles. We aim to investigate if the combination of ECG and VCG could improve the performance of machine learning algorithms in automatic myocardial ischemia detection. Methods: The ST-T segments of 20-second, 12-lead ECGs, and VCGs were extracted from 377 patients with myocardial ischemia and 52 healthy controls. Then, sample entropy (SampEn, of 12 ECG leads and of three VCG leads), spatial heterogeneity index (SHI, of VCG) and temporal heterogeneity index (THI, of VCG) are calculated. Using a grid search, four SampEn and two features are selected as input signal features for ECG-only and VCG-only models based on support vector machine (SVM), respectively. Similarly, three features (S I , THI, and SHI, where S I is the SampEn of lead I) are further selected for the ECG + VCG model. 5-fold cross validation was used to assess the performance of ECG-only, VCG-only, and ECG + VCG models. To fully evaluate the algorithmic generalization ability, the model with the best performance was selected and tested on a third independent dataset of 148 patients with myocardial ischemia and 52 healthy controls. Results: The ECG + VCG model with three features (S I ,THI, and SHI) yields better classifying results than ECG-only and VCG-only models with the average accuracy of 0.903, sensitivity of 0.903, specificity of 0.905, F1 score of 0.942, and AUC of 0.904, which shows better performance with fewer features compared with existing works. On the third independent dataset, the testing showed an AUC of 0.814. Conclusion: The SVM algorithm based on the ECG + VCG model could reliably detect myocardial ischemia, providing a potential tool to assist cardiologists in the early diagnosis of CVD in routine screening during primary care services.

6.
Sensors (Basel) ; 22(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336504

RESUMO

Based on the residual turbulent scintillation theory, the Mie-scattering lidar can measure the intensity of atmospheric turbulence by detecting the light intensity scintillation index of the laser return signal. In order to evaluate and optimize the reliability of the Mie-scattering lidar system for detecting atmospheric turbulence, the appropriate parameters of the Mie-scattering lidar system are selected and optimized using the residual turbulent scintillation theory. Then, the Fourier transform method is employed to perform the numerical simulation of the phase screen of the laser light intensity transformation on the vertical transmission path of atmospheric turbulence. The phase screen simulation, low-frequency optimization, and scintillation index calculation methods are provided in detail, respectively. Based on the phase distribution of the laser beam, the scintillation index is obtained. Through the relationship between the scintillation index and the atmospheric turbulent refractive index structure constant, the atmospheric turbulence profile is inverted. The simulation results show that the atmospheric refractive index structure constant profile obtained by the iterative method is consistent with the input HV5/7 model below 6500 m, which has great guiding significance to carry out actual experiments to measure atmospheric turbulence using the Mie lidar.

7.
Appl Opt ; 59(29): 9118-9125, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33104622

RESUMO

Cucumber (Cucumis sativus L.) is a widely cultivated and economically profitable crop. However, Fusarium wilt disease can seriously affect cucumber yields, as it is difficult to prevent and eliminate. Therefore, a reliable method is needed for the rapid and early detection of Fusarium infection in cucumbers, which could be provided via the kinetic imaging of chlorophyll fluorescence (ChlF). In this study, ChlF imaging and kinetic parameters were utilized with gray and radial basis function models to monitor cucumber Fusarium wilt disease. The results indicate that the disease can be detected and predicted using this imaging technique before symptoms become visible.


Assuntos
Clorofila/análise , Cucumis sativus/microbiologia , Fusariose/microbiologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Espectrometria de Fluorescência/métodos , Cucumis sativus/química
8.
Appl Opt ; 56(20): 5620-5629, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29047703

RESUMO

Aerosols and water vapor are important atmospheric components, and have significant effects on both atmospheric energy conversion and climate formation. They play the important roles in balancing the radiation budget between the atmosphere and Earth, while water vapor also directly affects rainfall and other weather processes. To further research atmospheric aerosol optical properties and water vapor content, an all-time six-channel multi-wavelength polarization Raman lidar has been developed at Beifang University of Nationalities. In addition to 1064, 532, and 355 nm Mie scattering channels, the lidar has a polarization channel for 532 nm return signals, a 660 nm water vapor channel, and a 607 nm nitrogen detection channel. Experiments verified the lidar's feasibility and return signals from six channels were detected. Using inversion algorithms, extinction coefficient profiles at 1064, 532 and 355 nm, Ångström exponent profiles, depolarization ratio profiles, and water vapor mixing ratio profiles were all obtained. The polarization characteristics and water vapor content of cirrus clouds, the polarization characteristics of dusty weather, and the water vapor profiles over different days were also analyzed. Results show that the lidar has the full-time detection capability for atmospheric aerosol optical properties and water vapor profiles, and real-time measurements of aerosols and water vapor over the Yinchuan area were realized, providing important information for studying the environmental quality and climate change in this area.

9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(9): 2629-33, 2015 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-26669180

RESUMO

Aiming at SPAD values of living plant leaf chlorophyll content affected easily by the blade thickness, water content, etc, a fine retrieval method of chlorophyll content based on multiple parameters of neural network model is presented. The SPAD values and water index (WI) of leaves were obtained by the leaf transmittance under the irradiation of light central wavelength in 650 nm, 940 nm, 1450 nm respectively. Meanwhile, the corresponding blade thickness is got by micrometer and the chlorophyll content is measured by spectrophotometric method. To modeling samples, the single parameter model between SPAD values and chlorophyll content was built and the nonlinear model between WI, thickness, SPAD values and chlorophyll content was established based on BP neural network. The predicted value of chlorophyll content of test samples were calculated separately by two models, and the correlation and relative errors were analyzed between predicted values and actual values. 340 samples of three different plant leaves were tested by the method described above in experiment. The results showed that compared with single parameter model, the prediction accuracy of three different plant samples were improved in different degrees, the average absolute relative error of chlorophyll content of all pooled samples predicted by BP neural network model reduced from 7.55% to 5.22%. The fitting determination coefficient is increased from 0.83 to 0.93. The feasibility were verified in this paper that the prediction accuracy of living plant chlorophyll content can improved effectively using multiple parameter BP neural network model.


Assuntos
Clorofila/análise , Redes Neurais de Computação , Folhas de Planta/química , Luz , Espectrofotometria , Água
10.
Biomed Res Int ; 2013: 417278, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23862145

RESUMO

PURPOSE: Dual-energy CT imaging tends to suffer from much lower signal-to-noise ratio than single-energy CT. In this paper, we propose an improved anticorrelated noise reduction (ACNR) method without causing cross-contamination artifacts. METHODS: The proposed algorithm diffuses both basis material density images (e.g., water and iodine) at the same time using a novel correlated diffusion algorithm. The algorithm has been compared to the original ACNR algorithm in a contrast-enhanced, IRB-approved patient study. Material density accuracy and noise reduction are quantitatively evaluated by the percent density error and the percent noise reduction. RESULTS: Both algorithms have significantly reduced the noises of basis material density images in all cases. The average percent noise reduction is 69.3% and 66.5% with the ACNR algorithm and the proposed algorithm, respectively. However, the ACNR algorithm alters the original material density by an average of 13% (or 2.18 mg/cc) with a maximum of 58.7% (or 8.97 mg/cc) in this study. This is evident in the water density images as massive cross-contaminations are seen in all five clinical cases. On the contrary, the proposed algorithm only changes the mean density by 2.4% (or 0.69 mg/cc) with a maximum of 7.6% (or 1.31 mg/cc). The cross-contamination artifacts are significantly minimized or absent with the proposed algorithm. CONCLUSION: The proposed algorithm can significantly reduce image noise present in basis material density images from dual-energy CT imaging, with minimized cross-contaminations compared to the ACNR algorithm.


Assuntos
Artefatos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X , Algoritmos , Humanos , Intensificação de Imagem Radiográfica , Radiografia Abdominal
11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(7): 2006-10, 2010 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-20828020

RESUMO

A compact Mie scattering lidar system has been developed to measure the optical properties and temporal-spatial distribution of atmospheric aerosol particles and some continuous experiments were carried out over Yinchuan area (38 degrees 29'N, 106 degrees 06'E) from 1 to 10 April in 2009 for the first time. The laser located at wavelength of 532 nm was selected as the light source and the Fernald method was used to retrieve the extinction coefficient. The aerosol extinction coefficient profiles and temporal-spatial variation properties of aerosol relative density were obtained and analyzed within the whole day at one hour interval, and also an obvious sand-dust-weather process over Yinchuan area was observed and analyzed. The observation results show that the compact Mie scattering lidar is capable of measuring efficiently the optical properties and temporal-spatial distribution of aerosol particles, and the measurement result is useful for studying the variation tendency of atmospheric aerosol and sand weather of Yinchuan area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...